
J .  Fluid. Meek  (1982), vol. 124, pp .  335-345 

Printed in Great Britain 

335 

Jets rising and falling under gravity 
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Steady two-dimensional jets +of inviscid incompressible fluid, rising and falling under 
gravity, are calculated numkrically. The shape of each jet depends upon a single 
parameter, the Froude number h = qc(Qg)-i, which ranges from zero to infinity. Here 
qc is the velocity at the crest of the jet, i.e. the highest point of the upper surface, 
Q is the flux in the jet. and g is the acceleration of gravity. For h = 00 the jet is slender 
and parabolic. It becomes thicker as h decreases, and reaches a limiting form at h = 0. 
Then there is a stagnation point at the crest, where the surface makes a 120' angle 
with itself. This angle is predicted by the same argument Stokes used in his study 
of water waves. 

The problem is formulated as an integro-differential equation for the two free 
surfaces of the jet, This equation is dlscretized to yield a set of nonlinear equations, 
which are solved numerically by Newton's method. In addition, asymptotic results 
for large h are obtained analytically. Graphs of the results are presented. 

1. Introduction 
When a stream of water emerges from a nozzle aimed upwards at some angle 

from the vertical, thc stream rises to a maximum height and then falls in a somewhat 
parabolic arc, as is shown in figure 1 .  We fihall calculate the shape of this kind of jet 
numerically by assuming that the flow within it is steady, two-dimensional and 
irrotational, and that the fluid is incompressible and inviscid. We shall take account 
of gravity but neglect all other forces, such as surface tension and air resistance. We 
shall also assume that the nozzle is infinitely far away, so that the flow is bounded 
entirely by two free streamlines. 

We shall see that the shape of the jet is determined solely by its dimensionless 
E'roude number 

Here g is the acceleration of gravity, Q is the flux in the jet and qc is the flow velocity 
a t  the highest point of the jet, i.e. at its crest. As h tends to infinity, the jet becomes 
slender and its profile tends to a parabola. This is to be expected if each particle of 
the fluid moves independently of the others. An outer asymptotic solution for large 
A,  which yields this profile and corrections to i t ,  was obtained by Keller & Weitz (1957) 
and Keller & Geer (1973). We derive the corresponding inner asymptotic solution, 
valid near the crest, and compare i t  with our numerical results in figures 3 ( a ) ,  4 and 
5. The agreement constitutes a check on the analysis and on the numerical method. 

As h decreases we find that the jet becomes thicker. The limiting jet, for h = 0, 
has a stagnation point at its crest, and the upper surface of thc jet has a 120' corner 

(1.1) = Qc (&S)F' 
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t,here, as can be seen in figure 3 ( d ) .  The fact t.hat. thcre must. be such an angle at a 
st,agnation point on the upper surface follows by t'he same argument used by Stokes 
in t,he case of water waves. Furthermore for h small, the flow near t'he crest is similar 
to that near the crest of the almost' highest steady progressing water wave. 
Consequently this flow is described by t,hc calculations that have been made for the 
waber-wave case by Grant (1973), Longuet-Higgins & Fox (1977) and others. 

Our results can be int,erpret,ed as if the flow emerged from a nozzle a t  some large 
finite distance from t>he crest', aimed a t  an angle I9 above the horizontal. For a fixed 
nozzle widt.h and flux, the Froude number h can be expressed as a decreasing function 
of 19. Then the velocity pc a t  the crest decreases as I9 increases until pc = 0 a t  some 
1imit)ing nozzle angle Omax. For 13 > Omax we could construct a solution corresponding 
t>o the potential plane of figure 2 ( a )  with an additional free boundary along some line 
$ = k0. q5 > 0 with -+ < giro < 0. This would represent a jet t,hat splits into two near 
the crest, with one part) continuing forward and the other part being thrown 
backward. The fraction of the flux in the backward jet would be - $o, which would 
increase from zero a t  I9 = emax to one half a t  6' = in. 

The reason wc have not, calculated these split-jet solutions is that, we expect, the 
backward jet to overlap the unseparated jet when t'he solution is mapped into the 
physical plane. This should happen very near t>he crest when - $o is small, i.e. when 
I9 is just, slightly above Omax, because the backward jet will emerge with a very low 
velocit,y. As - $o increases, i.e. as I9 increases, the overlap region will move away from 
the crest. When - $o = +, i.e. when the incident jet is vert>ical, there will be no overlap 
since the overlap region will have moved to infinity. 

If t>he flow emerges from a nozzle a t  a finite distance from t'he crest, the solution 
will be physically meaningful if the overlap occurs further from the crest than the 
nozzle. 0t)herwise the solution will not' be meaningful, which suggests that) then there 
will be no steady solut,ion of the flow problem. 

In $ 2  we formulat~e the problem as an integro-differential equation for the jet) 
surface. Then in 93 we present a numerical met'hod for. solving t,his equation. It' 
employs discretization, which converts the equation into a set of nonlinear algebraic 
equations, and Newton's method for solving these equations. The results are 
discussed in $4. In appendix A an outer asymptot>ic expansion for t>he jet is 
const,ructed for large A,  valid away from t,he crest. In  appendix B the corresponding 
inner expansion, valid near t>he crest, is found. 

J.-M. I'amiu-Broeck arid J .  B. Keller  

2. Formulation 
Let us consider a steady two-dimensional jet bounded by the upper streamline 

@ = 0 and the lower streamline $ = -Q. as is indicated in figure 1 .  Here $ is the 
stream function of the potential flow within the jet, and q5 is the corresponding 
potential function. We choose Cartesian coordinates with origin at the crest and with 
the positive y-axis pointing vertically upward, and we set q5 = 0 a t  the origin. We 
also assume that the jet is symmetric about the y-axis, so that q5 = 0 on the axis y = 0. 

On the two surfaces of the jet the Bernoulli equation yields 

Wq5)'+gY = i8 ($ = 0, - Q) (2.1) 

We now introduce dimensionless variables by using (Q2/g)g as the unit of length and 
(Qq): as the unit of velocity. In these variables (2.1) becomes 

(Vq5)2+2y = h2 ($ = 0, - I ) ,  ( 2 . 2 )  
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FIGURE 2.  ( a )  The image of the flow is a strip in the plane of the complex potential f = 6 + i$. 
( b )  The uj = u + ir1 plane. 
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where h is defincd by ( 1 . 1 ) .  The problem is to find 3 = x+ iy  as an analytic. func.t>ion 
of f = $+ i$ in the strip - 1 < $ 6 0 of the f-plane. with (2.2) holding on the 
boundaries of the strip. The strip in thcf-plane is shown in figure 2 ( a ) .  

It is convenient, to map this st,rip ont.o t.he whole plane of thc new complex variable 
ic' = '14 + i 7 ~  by the t,ransformation 

( 2 . 3 )  

The right half of the strip, indicabed by Fh'BC! in figure 2 ( a ) ,  is mappcd onto the 
lower half of the wplane shown in figure B ( b ) .  The left half of the strip, UEHB in 
figure 8 ( a ) ,  is mapped onto the upper half of thr wplane in figure 2 ( b ) .  

In  view of ( 2 . 3 ) ,  we now seek 2 = z ( w )  as an analyt'ic funct'ion of' u' in t>he whole 
w-plane. When ( 2 . 2 )  isrewrittenin termsofx(u,z!) andy(u, r l ) .  only t>he valuesofx(u, 0) 
and y (u ,O)  occur in it,, sinw the two bounding streamlines a,re mappcd ont,o the 
portions \u/ > 1 of the axis 21 = 0. We shall therefore writt. X ( U )  = x(u,O) and 
y(u) = y ( u ,  0). Then (2 .2)  becomes 

w = u + i7! = cosh 7rf. 

2 y ( u ) + [ ~ ' ( / ~ ' - 1 )  { [ x ' ( ? ~ ) ~ ~ + [ Y ' ( u ) ' ] ) ] - ~  = A' (2' = 0, I u I  > 1 ) .  (8.4) 

Furthermorc, x = 0 on the segment BE of the y-axis in figure 1, which has been 
mapped onto the segment BE of thc $-axis in figure 2 ( a )  and onto the segment) HE 
of the u-axis in figure 2 ( b ) .  Therefore 

S(1I)  = X ( U , O )  = 0 (1.U < 1). (2.5) 

The function ~ ' ( 2 ~ 1 )  is analytic in thc lower half of the 7c:-plane and tends t.o zero 
exponentially fast, a t  infinity. Therefore, on 21 = 0.  its inmginary part y ' ( u )  is t<he 
Hilbert transform of its real part ~ ' ( u ) .  From ( 2 . 5 )  x ' ( u )  = 0 for (uI < 1, and thus the 
Hilbert, transform yields 

(8.6) 

Next), since B is a t  the origin in the (x,y)-plane and a t  ti = 1 .  1' = 0 in the rci-plane. 
we have 

y(1) = y(1,O) = 0. (2 .7 )  

Now the y-coordinate of any point on the free surface, which corresponds t.0 (u .  0) 
in the to-plane, can be calculated by using ( 2 . 7 )  as an initial value and integrating 
y'( u )  to get 

LJ(l4) = y ' ( u )  du .  (2.8) 

For any value of h b 0, (2.4), (2.6) and (2.8) are a set of equations for ~'00. y ' ( u )  
and y(u). By using (2.6) and (2.8) to eliminate y'(u) and y(1i).  we can convert (2.4) 
int'o a single integro-differential equation for ~ ' ( u )  in the region Iu I > 1. Onw this 
equation is solved. y ' ( u )  can be found from (2.6), y ( u )  can be found from (2.8), and 
x ( u )  can be found by integrating x ' (u )  with t,he init,ial condition (2.5). Then x(,u).  y(u) 
is a pammetric representation of the two free surfaces of the jet.. The range u > 1 
gives t'he upper surface and the range v < - 1 gives the lower surfarc. 
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3. Numerical method 
1, 

so that a’(u) is singular a t  these two points. To remove these singularities we introduce 
the following new variables : 

Before solving (2.4), (2.6) and ( 2 . 8 ) ,  we note that z ’ (u)  - (u2- l)-i near u = 

u = 1 + a n  ( u > 1 ,  a>O) ,  (3.1) 

u = - l - p .  (u < -1,  p > O) ,  

u = c o s n s  ( -1  < u <  +1, 0 < 6 < 1 ) .  

(3.2) 

(3.3) 

Here n 2 2 is an integer to be chosen. Then the new functions z(a)  = z[u(a)] ,  
z(p) = z[u(p)]  and z(S)  = z[u(6)] have derivatives that are finite everywhere. Therefore 
we rewrite (2.4), (2.6) and (2.8) in terms of a,  /3, 6 ,  z (a) ,  z(p) and z ( S ) .  

Ncxt we introduce the mesh points 

“1 = (21 -  1 )  E ( I  = 1 ,  . . . , N l -  l ) ,  (3.4) 

p1=a, ( I =  l,...,N,-l), 

6, = (21 -  1 ) / 2 N ,  ( I  = 1,. . . , N 2 ) .  

(3.5) 

(3.6) 

Here E is the mesh width. We also define the 2 N , - 2  unknowns 

X’(a l )=Xa(a l )  ( I =  1 ,  . . . ,  Ni- l ) ,  (3.7) 

q 3 , ) = X p ( / 3 , )  ( I =  l,...,N,-l). (3.8) 

In addition we shall use the intermediate mesh points 

“I+:  = $(ar+al+l) ( I  = 1 , .  . . , N , - 2 ) ,  (3.9) 

p,+;=a,+: ( I =  1 , . . . , N 1 - 2 ) .  (3.10) 

Then we compute Y(cr,+g), Y’(p,+&) and Y’(6,) in terms of the s‘(a,) and S’(/l,) 
by applying the trapezoidal rule to the integrals in (2.6), rewritten in terms of the new 
variables, with the mesh points aJ and P J .  The symmetric spacing of the mesh points 
enables us to compute the Cauchy principal-value integrals as if they were ordinary 
integrals. (For more details see Vanden-Broeck & Schwartz 1979 : Vanden-Broeck & 
Keller 1980.) 

Next we use the values of Y(a1) in (2.8) to compute Y(/3)lg=o. From (2.8) we have 
Y(a)l,=, = 0. We then use the values of Y(ai++) and Y’(p,+;) to compute Y(al )  and 
I’(p1) from (2.8) by the trapezoidal rule, and to find Y ( a l )  and I”(p,) by 
interpolation. The error inherent in approximating the infinite integrals by finite 
integrals should be negligible for N ,  E large enough. This was found to be the case 
in the computations to be described. 

By proceeding in this way, we obtain J?’(a,), Y(a1). E’(P,) and Y(p1) in terms 
of S’(a,) and X(p,) We then substitute these values into (2.6) a t  the mesh points 
a,, ( I  = 1 , .  . . , N ,  - 2 ) .  Thus we obtain 2N1 -4 equations for the 2N1 - 2 unknowns 
Y’(a,), X’(p,). The last two equations are obtained by expressing X’(aN,-,) and 
X’(/?Nl-l) in terms of X’(a,) and S’(/3,) ( I  = Nl-4,.  . . , 1cT1-2) by three-point 
Lagrange formulas. 

For a given value of h we solved this system by Newton’s method. In  most of the 
computations we used n = 5, N ,  = 20, N ,  = 20 and E = 0.2. Xumerical tests were 
performed by increasing N ,  and N ,  and varying E to check that the results obtained 
were correct to a t  least graphical accuracy. 
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FIGURE 3 (u ) - (c ) ,  For caption w e  facing page. 
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( d )  

FIGURE 3. Profiles of t>he jet computed numerically for four values of A :  ( a )  h = 1.4; ( b )  0.6; (c)  0.4; 
(d )  0. The horizontal and vertical scales are the same. In case (a )  the top surface coincides, to 
graphical accuracy, with the parabola y = - x 2 / 2 A 2  obtained by eliminating so from the first terms 
of (4.1) or eliminating $ from the first terms of (4.3). The dashed curve in ( a )  is the parabola 
y = - - A - ' + ~ h 4 - x 2 / 2 A 2 ,  obtained by eliminating from the first two terms (up to A-4) in (4.4). 
The dashed lines in (d )  correspond to the Stokes angle of 120'. 

4. Discussion of the results 
We have used the numerical scheme of 9 3 to compute solutions for various values 

of A. We started with a large value of h and used a uniform stream as the initial guess. 
After the solution converged, it was used as the initial guess for a smaller value of 
A,  and so on. Profiles for h = 1.4, 0.6, 0.4 and 0 are shown in figure 3. 

In  order to compare our computed results with analytical ones, we have solved the 
flow problem asymptotically for large A. First (see appendix A) we used the theory 
of Keller & Geer (1973) to get the following asymptotic results for the jet's surfaces 
in terms of the parameter xo. For the upper surface we get 

x = q 2  { x - x0 [ (1 - +4)(4 + xi)-' -+I + O(h-')} (4.1 a), 

y = ihZ{ - &r; - 2h - 3  [ (1  -+;) (4 + z;)-l-t] + O(h -"} (4.1 b )  

For the lower surface we find 

x = &l2{x0 - x0 [ (5  - ix;)(4 + T;)-' - +] + O(h-')}, (4 .2a)  

( 4 . 2 b )  

Although these equations seem to describe the jet everywhere, they actually yield 
an outer expansion, valid away from the crest. We see this by examining (3 .2b) ,  in 
which the second term exceeds the first term when lsol 5 (8/h3)d, which corresponds 
to 1x1 5 (2h):. Therefore in appendix B we derive an inner expansion for the flow in 
the jet and for its surfaccs, valid in the neighbourhood of x = 0. The resulting 
parametric equations for the upper surface are 

y = ih2{-122-2h-3[(5--X 2 0  : ; ) (  4+r,) 2 -1-1 4]+O (h-')). 

( 4 . 3 a )  

( 4 . 3 b )  
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0 1 2 3 

h 
FIGURE 4. Thickness of‘the jet as a function of the Froude number A. The Curve (a) corresponds 
to  the numerical results. The curves ( b ) ,  (c)  and ( d )  corresponds respectively t o  one, two and three 
terms of the asymptotic forumula (4.5). 

and for thc lower surface they are 

(4.4U) 

(4.46) 

The asymptotic results ( 4 . 3 ~ 1 ,  b )  and (4.4~1, b )  are compared with the numericha1 results 
for the jet with h = 1 4  in figure ~ ( c I ) .  

The jet thickness L at the crest is the difference between the values of y given by 
(4.36) and (4.4b) at x = # = 0. It is given by 

(4.5) 

The first term in (4.5) is given by Keller & n7eitz (1957), and the first two terms also 
follow from the outer expansion (4 .1~1,  b )  and (4.2a, b ) .  I n  figure 4 we present our 
numerical results for L and compare them with (4.5). For h > 1.5 the first term agrees 
with the numerical results within 12”,, and two terms agree within 4”,. 

A mcasure of the variation in the flow velocity across the jet is the ratio B of the 
square of the velocity at the crest to the square of the velocity a t  the point on the 
lower surface directly beneath the (.rest. From Bernoulli’s equation B is given by 

1 -  - h-l_lh-4+”h-7+O(h-10),  

In figure 5 we show B as a function of A based upon our numerical results. For 
comparison we also show the value of B given by the asymptotic theory of appendix 
B, obtained by using (4.5) for L in (4.6). 
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1 i 

0 1 2 3 

x 
P I G ~ R E  5 .  The ratio B of the square of the velocity at the crest to  the square of the velocity at 
the point beneath the crest on the lower surface, given by (1.6), as a function of A. The solid curve 
is based upon the numerical results and the dashed r u r w  is obtained by using the asymptotic result 
(1.5) for L in (4.6). 

We have computed solutions for h up to and including the limiting case h = 0 shown 
in figure 3 ( d ) ,  at which a stagnation point occurs at  the crest on the upper surface 
of the jet. The flow in the neighbourhood of such a point can be found analytically 
by employing the argument used by Stokes (1880) in the ease of watcr waves, which 
yields 

(4.7) 

From (4.7) it follows that the surface has a 130' corner a t  the stagnation point. The 
broken lines in figure 3 ( d )  enclose a 120' angle with its vertex at the crest. We see 
that these lincs arc tangent to the free surface there, which shows the agreement 
between the numerical solution and the local result (4.7). 

To compute the jet shown in figure 3 ( d )  we used n = 6 in the change of variables 
(3.1) and (3.2). We did so because for this choice of 11 it follows from (4.5) that  
,zz (a) = a + o ( a )  as a -+ 0 and that ,zb (p) = p+ o(p )  as ,8 i 0. 

Correction terms to (4.7) for the highest steady periodic gravity wave were obtained 
by Grant (1973). and for almost-highest waves they were found by Longuet-Higgins 
& Fox (1977). Those terms also apply to the jet with h = 0 and h near zero, 
respectively. They show that the surface undulates slightly near the crest. Longuet- 
Higgins & Fox (1977) found that these undulations were accompanied by an 
oscillation in the velocity of the waves as a function of their steepness, with infinitely 
rapid oscillations occurring as the steepness approaches its maximum value. Therefore 
we expect similar oscillations in figure 4, which would imply that L oscillates infinitely 
often as h + 0. These oscillations would be of an amplitude too small to be seen on 
the scale of figure 4, and smaller than the numerical accuracy of the present work. 
One consequence of such oscillations might be that the highest two-dimensional jet 
is not the thickest. 
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Appendix A. Outer expansion 

We shall now apply to the present problem the theory of slender jets given by Keller 
& Geer (1973). To do SO we choose the unit of velocity to be qc and unit of length 
to  be q:/2g. Then the parameters y and 6 introduced by Keller & Geer (their equation 
(2.1)) become y = 1 and e = 2A-3. The first terms in their expansions (3.1) and (3.2) 
become 

~ ( $ + i $ , 2 A - ~ )  = ~ , ( $ ) + 2 h - ~  [zA($) i @ + z , ( $ ) J  

+4~-6[$=;($) ( i @ ) z + + ;  ($) i j l . + z , ( $ ) l + 0 ( ~ - 9 ) .  (A 1) 

Now zo = xo+iyo is given by their equations (3.18) and (3.19), with yo(0) = a = 0 and 
dy, ( 0 ) / d x o  = tan p = 0, corresponding to the fact that  the origin is a t  the crest of the 
jet. Then their (3.20) yields b = t. so that (3.18) and (3.19) lead to 

Next, by setting y1 (0) = 0 and yi (0) = 0, we find from (3.34) and (3.35) of Keller 
& Geer that A ,  = 0 and B, = -a. Then their (3.32) and (A 2 )  above yield 

. 1 -  y - -(l-+x;) (4+xi)- l+$. 

With 5, = 0, then their (3.33) gives 

x1($) = 4x0 ($)Yl($). (A 5 )  

By using (A 2)-(A 5) in (A 1) a t  @ = 0 and a t  $ = - 1, we obtain the equations of 
the upper and lower surfaces of the jet in the parametric forms (4.3) and (4.4) 
respectively. The unit of length in the text is ( Q 2 / g ) ; ,  which is Z A P  times that used 
in this appendix, namely qE/2g. Therefore the expressions for x and y have been 
multiplied by %A2 to convert them to the units used in the text. 

The jet thickness L beneath the crest can be found by subtracting y given by (4.3) 
from y given by (4.4) a t  ro = 0. In  the units of t,his appendix this yields 
L = 2AP3+O(hP) .  The next term can be found by keeping the terms of order A P  
in (A 1). By using the fact that  xA(0) = 0 and y i (0)  = -$, we get in this way 

I, = 2h-3 + 4A-6 [By”(O) + X i ( O ) ]  + 0 ( A - 9 )  

= 2h-3-A- 6 +  o ( A - ~ ) .  
I n  the units used in the text, L is given by the first two terms in (4.5). 

Appendix B. Inner expansion 
As was pointed out in the text, the expansion given in appendix A is not valid near 

the crest, so we shall now construct another expansion, which is valid there. To do 
so we choosc the unit of velocity to be qc as before, but now we choose the unit of 
length to be Q/q,, where Q is the mass flux in the jet. Then the Bernoulli equation 
on the surfaces of the jet becomes 

q2+2€y = 1 (31. = 0, -1). (B 1) 

Hcre e = A-3 = Q g / q g .  We seek a function z($+iy?) = x($,$)+iy($,@), analytic in 
the strip - 1 < ,< 0, and which satisfies (B 1 )  on the boundaries of the strip. I n  
terms of z ,  (B 1)  becomes 

(x$+y$)-’+2ey = 1 ($ = 0,-1) .  (B 2) 
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In addition we require # = $ = 0 a t  x = y = 0. 
To solve (B 3 )  we write 

z ( $ + i $ )  = z o ( # + i $ ) + e z , ( # + i $ ) + s 2 z 2 ( # + i $ ) + .  . . .  (B 3) 

Then we use (B 3) in (B 2 )  and equate coefficients of corresponding powers of c. This 
leads to a sequence of problems for zo, zl, etc., the first of which is 

(X;$+y;$)-l = 1 ($ = 0, - l ) ,  (B 4) 

(13 5) xo = y" = 0 (4 = $ = 0 ) .  

The only analytic function satisfying (B 4) and (B 5) and growing slower than an 
exponential at infinity is zo = #+;I&, so that xo = # and yo = $. 

The boundary condition (B 2) yields at order 6 

XI$ = $ ($ = 0, - 1 ) .  (B 6)  

We can satisfy (B 6) by requiring zi = - i (#+ i$) ,  so that z1 = -$ i (#+i$)2 .  This is 
the unique solution for z1 that vanishes a t  the origin and grows more slowly than 
an exponential a t  infinity. From (B 2 )  a t  order e2 we get 

X 2 $  = 2 ? p - # 2  ($ = 0, -1) 

We find that z2 = +i(#+i$)2 - + ( $ + i $ ) 3 .  
On collecting our results we obtain 

The results (4.3) and (4.4) follow from (B 8) by setting $ = 0 and $ = - 1 respectively, 
and separating real and imaginary parts. 
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